




# Microstructures and photocatalytic properties of $\text{Ag}^+$ and $\text{La}^{3+}$ surface codoped $\text{TiO}_2$ films prepared by sol–gel method

Nan Zhao <sup>a</sup>, Ming-ming Yao <sup>a,\*</sup>, Fang Li <sup>a</sup>, Fei-peng Lou <sup>b</sup>

<sup>a</sup> Key Laboratory of Chemical Sensing & Analysis, Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China

<sup>b</sup> China Petroleum Engineering & Construction Corporation, Beijing 100120, China

## ARTICLE INFO

### Article history:

Received 24 May 2011

Received in revised form

21 July 2011

Accepted 10 August 2011

Available online 19 August 2011

### Keywords:

Sol–gel

$\text{TiO}_2$  film

$\text{Ag}^+/\text{La}^{3+}$  codoping

Surface doping

Photocatalytic activity

## ABSTRACT

$\text{Ag}^+$  and  $\text{La}^{3+}$  surface codoped  $\text{TiO}_2$  films were successfully prepared by the improved sol–gel and doping processes. The as-prepared specimens were characterized using differential thermal analysis–thermogravimetry (DTA–TG), X-ray diffraction (XRD), high-resolution field emission scanning electron microscopy (FE-SEM), X-ray energy dispersive spectroscopy (EDS), Brunauer–Emmett–Teller (BET) surface area, Photoluminescence spectrum (PL) and UV–vis diffuse reflectance spectroscopy. The photocatalytic activities of the films were evaluated by degradation of an organic dye in aqueous solution. The results of XRD, FE-SEM and BET analyses indicated that the  $\text{TiO}_2$  films were composed of nano-particles or aggregates with a size of less than 10 nm. With the codoping of  $\text{Ag}^+$  and  $\text{La}^{3+}$ ,  $\text{TiO}_2$  films with high photocatalytic activity and clearly responsive to the visible light were obtained. The improvement mechanism by ions doping was also discussed.

© 2011 Elsevier Inc. All rights reserved.

## 1. Introduction

Semiconductor heterogeneous photocatalytic oxidation process is a popular technique that has great potential to control aqueous organic contaminates or air pollutants [1,2]. These processes are all characterized by the same chemical features such as production of hydroxyl radicals ( $\text{OH}$ ) and superoxide anion ( $\text{O}_2^-$ ), which are generated when a semiconductor catalyst absorbs radiation when it is in contact with water and oxygen. Among various oxide semiconductor photocatalysts,  $\text{TiO}_2$  photocatalysis is considered as an attractive approach because of its strong oxidizing power, photo-stability, non-toxicity, chemical and biological inertness, as well as its low cost [3–7]. However, conventional powdered  $\text{TiO}_2$  is limited as photocatalysts, since a post-treatment separation is required to recover the catalyst in wastewater treatment process. Nano-oxide films with a great potential for applications have attracted considerable interests recently.

The photocatalytic activity of the  $\text{TiO}_2$  is due to the production of photo-generated electrons ( $e^-$ ) and corresponding positive holes ( $h^+$ ) under UV illumination. However, the species are unstable, and the recombination of electrons and holes can occur very quickly. In fact, the photocatalytic efficiency of  $\text{TiO}_2$  to

degrade pollutants decreases substantially due to the high recombination ratio of the species. To reduce the recombination of photo-generated electrons and holes, and to extend the light absorption of  $\text{TiO}_2$  into visible light region, many approaches have been carried out including various preparation, different carriers, surface modifications, etc. The introduction of transition metal ions in the photocatalytic reaction is one of the most efficient and simplest way of surface modification. Among the transition metal ions studies, silver ions doping has been the most interesting one due to the remarkable improvement of the photocatalytic activity of  $\text{TiO}_2$ . Seery et al. [8] reported silver doped titanium dioxide nanomaterials prepared by the sol–gel process, and tests found that the Ag doping could enhance the photocatalytic activities of  $\text{TiO}_2$  materials under visible light. Serrano et al. [9] prepared  $\text{TiO}_2$  nanoparticles doped with different Ag contents by a modified sol–gel method, and tests found that the Ag doping could increase the thermal stability of the  $\text{TiO}_2$  particles, enhance the crystallization process, and inhibit the normal anatase–rutile phase transition when annealed in air. Ao et al. [10] synthesized Ag-doped mesoporous titania via a combined sol–gel process with surfactant-assisted templating method, and tests found that the sample with 0.5% Ag doping had the highest photocatalytic activity. Moreover, modification of  $\text{TiO}_2$  nanoparticles or nanofilms through a small amount of lanthanide metals is also increasingly being considered for maximizing its photocatalytic efficiency due to the distinctive chemical, physical and electronic features of lanthanide metals. Wu et al. [11] prepared enhanced photocatalytic activity of  $\text{TiO}_2$  films with doped La by micro-plasma

\* Corresponding author. Fax: +86 531 82765969.

E-mail addresses: [yaomm4364@sina.com](mailto:yaomm4364@sina.com), [chm\\_yaomm@ujn.edu.cn](mailto:chm_yaomm@ujn.edu.cn) (M.-m. Yao).

oxidation method, and suggested that the enhanced photocatalytic activities might be related to the forming of titanium dioxide lattice distortion, which might be easy to accumulate variable oxygen vacancy so as to trap photo-generate holes.

Compared with the conventional method of ions doping, we adopted a simple sol-gel process to prepare  $\text{Ag}^+$  and  $\text{La}^{3+}$  surface codoped  $\text{TiO}_2$  films in this paper. To the best of our knowledge, there were few study concentrated on Ag and La modified  $\text{TiO}_2$  films for the photodegradation of organic dyes in aqueous solutions, and the effects of ions doping on photocatalytic activity and microstructures of  $\text{TiO}_2$  films have not been reported.

## 2. Experimental

All chemicals used in this study were of analytical reagent grade quality. Double-distilled deionized water was used throughout.

Colloidal  $\text{TiO}_2$  was prepared by the simple sol-gel method. A total volume of 1 ml  $\text{TiO}(\text{C}_4\text{H}_9\text{O})_4$  was dissolved in 20 ml ethanol absolute under vigorous stirring in a clean and dry vessel at room temperature. After 5 min, 20 ml diluted nitric acid (0.2 M) was added to the above solution at the speed of 1 drop/s and kept on stirring till the colloidal suspension could be obtained. Colloidal  $\text{TiO}_2$  films were coated to the surface of glass substrate (25 mm × 25 mm × 1 mm) by a controllable dip-coating device in an ambient atmosphere. The speed was controlled at 3 mm  $\text{s}^{-1}$ . After a dip-coating for different times, the  $\text{TiO}_2$  sol- or gel-film for different thickness was obtained. A certain concentration of silver nitrate ( $\text{AgNO}_3$ ) or lanthanum nitrate ( $\text{La}(\text{NO}_3)_3$ ) aqueous solution was doped onto the surface layer of  $\text{TiO}_2$  gel-film, which should be called external doping or surface doping. Then, the ions doped  $\text{TiO}_2$  gel-films on glass substrate were calcined in air at a rate of 5  $^{\circ}\text{C}/\text{min}$  up to 450  $^{\circ}\text{C}$  and were left to stay in the furnace for 1 h for organics removal and crystalline  $\text{TiO}_2$ . Normally, ions were directly doped into  $\text{TiO}_2$  sol precursor, which should be called internal doping or bulk doping.

The thickness of  $\text{TiO}_2$  film can be approximately calculated by formula:  $H = W_2 - W_1/\rho l d$ , in which  $H$  is the thickness of film,  $W_1$  is the weight of glass substrate before coated film while  $W_2$  after it,  $\rho$  is the density of  $\text{TiO}_2$ ,  $l$  and  $d$  are the length and width of substrate, respectively. In our experiments, the thickness of  $\text{TiO}_2$  film was 1.20  $\mu\text{m} \pm 5\%$ , and doping ions extended into the film less than 50 nm deep determined by X-ray photoelectron spectroscopy.

The crystallization behavior the  $\text{TiO}_2$  was monitored using a differential thermal analysis-thermogravimetry (DTA-TG) machine. The identity of crystalline phase and the crystallite size of the  $\text{TiO}_2$  samples were identified by X-ray diffraction with a diffractometer employing  $\text{Cu K}\alpha$  radiation at a scan rate (20) of 0.05  $^{\circ}\text{S}^{-1}$ . The accelerating voltage and the applied current were 40 kV and 25 mA, respectively. Surface morphology of the  $\text{TiO}_2$  films was characterized by high-resolution field emission scanning electron microscopy (FE-SEM). The Brunauer–Emmett–Teller (BET) surface area of the  $\text{TiO}_2$  samples was analyzed by nitrogen adsorption/desorption apparatus. The surface area was determined by the multipoint BET method using the adsorption data in the relative pressure ( $P/P_0$ ) range of 0–1.0, and the desorption isotherm was used to determine the pore size distribution using the Barret–Joyner–Halender (BJH) method. The nitrogen adsorption volume at the relative pressure ( $P/P_0$ ) of 0.975 was used to determine the pore volume and average pore size. The recombination of electron–hole in the samples was studied by photoluminescence emission spectra, which was measured on a luminescence spectrometer (FLS 920).

The photocatalytic efficiency was evaluated by the degradation of Acid Naphthol Red (ANR) in an aqueous solution under both UV and visible light irradiations. Metal ions doped or undoped  $\text{TiO}_2$  films were settled in 5 ml aqueous organic dyes with a concentration of  $1.0 \times 10^{-4}$  mol  $\text{dm}^{-3}$  in a weighing bottle. A 300 W tungsten halogen lamp equipped with a UV cut-off filters ( $\lambda > 400$  nm) was used as a visible light source, and the wavelength of 365 nm was used as a UV light source. In our experiments, the volume of ions doping solution was fixed to 0.05 ml, while the concentration of ions doping solution was changeable. The measurements were repeated for each catalytic system, and the experimental error was found to be within the acceptable limit ( $\pm 5\%$ ). Their photocatalytic degradation rate can be calculated by formula:  $D = (A_0 - A)/A_0 \times 100\%$ , in which  $A_0$  is the absorbency of the organic dye solution before illumination while  $A$  after it.

## 3. Results and discussion

The typical DTA–TG curves of  $\text{TiO}_2$  samples are shown in Fig. 1. On the DTA curve, a broad endothermic peak at below 150  $^{\circ}\text{C}$  is due to dehydration, and two relatively small exothermic peaks at 217.0  $^{\circ}\text{C}$  and 290.1  $^{\circ}\text{C}$ , respectively, are due to combustion of organic substances contained in the gel. Of course, the positions and intensities of the peaks are strongly dependent on the gel preparation process and its composition. At 387.7  $^{\circ}\text{C}$  a very small exothermic peak observed may be due to the transformation of  $\text{TiO}_2$  from amorphous to crystalline existed in the form of anatase with a little brookite, and at about 504.1  $^{\circ}\text{C}$  brookite phase disappears. The temperature of the phase transition from anatase to rutile is at 542.2  $^{\circ}\text{C}$ . Therefore, rutile is a stable phase at high temperature, while anatase and brookite are metastable phases. In addition, from the TG curve we can clearly see that the curve becomes almost straight line at about 450  $^{\circ}\text{C}$ , indicating organic substances has been completely burned. On the basis of the DTA–TG curves analyses, all  $\text{TiO}_2$  samples calcined at 450  $^{\circ}\text{C}$  in air for 1.0 h in our experiments.

Normally, the anatase phase of titania is the main product in hydrolytic sol-gel synthesis of nanocrystalline titania. However, brookite or rutile is often present as a byproduct. Fig. 2 shows the XRD spectra of the undoped and ions doped  $\text{TiO}_2$  samples calcined at 450  $^{\circ}\text{C}$  in air for 1.0 h. The samples exhibit a good crystallinity constituted of a mixture of anatase (25.6°, 37.8°, 48.3°), rutile (27.6°, 36.1°) and brookite (30.9°), but the anatase phase is dominant in the as-prepared  $\text{TiO}_2$  samples. From Fig. 2, it can

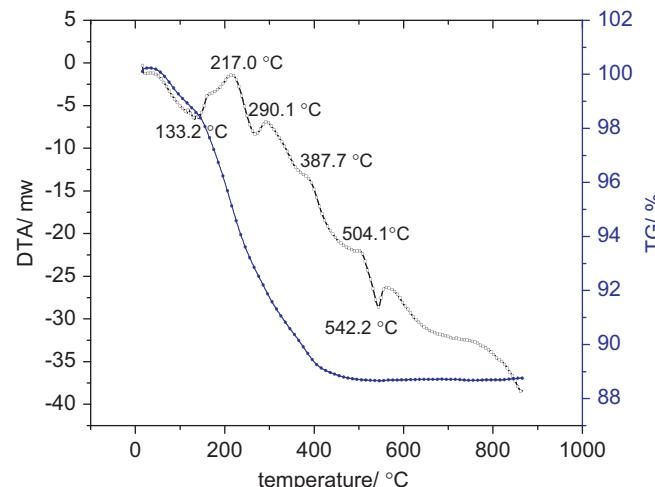



Fig. 1. A typical DTA–TG curves of  $\text{TiO}_2$  samples.

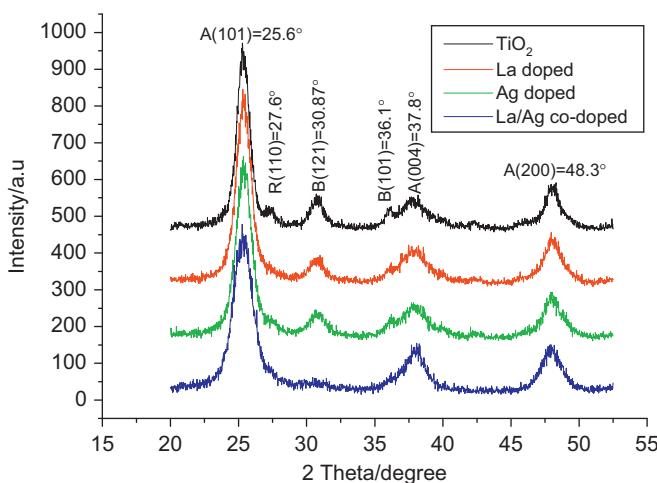



Fig. 2. XRD patterns of pure  $\text{TiO}_2$  and ions doped  $\text{TiO}_2$ .

be seen clearly that the rutile peaks of  $\text{TiO}_2$  samples have disappeared after  $\text{Ag}^+$  or  $\text{La}^{3+}$  single doping and  $\text{Ag}^+/\text{La}^{3+}$  codoping, while the intensity of brookite peaks have become weaker after  $\text{Ag}^+$  or  $\text{La}^{3+}$  single doping, even disappeared after  $\text{Ag}^+/\text{La}^{3+}$  codoping, indicating that ions doping cannot only suppress the formation of brookite phase but also inhibit the transformation of anatase to rutile at high temperature. According to the Scherrer equation:  $D=0.89\lambda/\beta\cos\theta$ , where  $\beta$  is the half-height width of the diffraction peak of anatase,  $\theta$  is the diffraction angle, and  $\lambda$  is the X-ray wavelength corresponding to the  $\text{Cu K}\alpha$  radiation, we can calculate that the average size of pure  $\text{TiO}_2$  particles is 6.5 nm, compared with 5.6 nm of  $\text{Ag}^+$  and  $\text{La}^{3+}$  codoped  $\text{TiO}_2$ . The well-crystallized  $\text{TiO}_2$  anatase can facilitate the transfer of the photo-induced electron, and lower the probability of recombination of photo-induced holes and electrons. Based on the XRD analyses,  $\text{Ag}^+$  and  $\text{La}^{3+}$  codoping can inhibit the phase transformation of  $\text{TiO}_2$  in the solid and hinder the increase of the crystallite size, which can result in the higher photocatalytic activity of the  $\text{TiO}_2$  samples.

Surface morphology of pure  $\text{TiO}_2$  films and  $\text{Ag}^+$  and  $\text{La}^{3+}$  codoped  $\text{TiO}_2$  films calcined at 450 °C in air for 1.0 h are shown in Fig. 3. It is clear that the films are composed of round-like nanoparticles or aggregates with a size of less than 10 nm, and indicating that the surface of the  $\text{Ag}^+$  and  $\text{La}^{3+}$  codoped  $\text{TiO}_2$  films is relatively uniform and smooth without cracks. A good dispersion among particles may increase the active site-reactant contact area, and enhance photocatalytic degradation of organic dyes. EDS element analyses indicate that the atomic ratio of  $\text{Ti}/\text{O}/\text{Ag}/\text{La}$  in codoped  $\text{TiO}_2$  is 26.92/71.25/0.32/1.51.

$\text{N}_2$  adsorption/desorption isotherms of pure  $\text{TiO}_2$  samples and  $\text{Ag}^+$  and  $\text{La}^{3+}$  codoped  $\text{TiO}_2$  samples calcined at 450 °C in air for 1.0 h are shown in Fig. 4a. From Fig. 4a, we can know that the isotherms of the two samples exhibit hysteresis loops at high relative pressures from 0.4 to 0.8. The sharp decline in desorption curve is indicative of mesoporosity, while the hysteresis loop demonstrates that there exists bottle-neck mesoporous structure, possibly caused by non-uniform pore size. It is evident that with the same relative pressure codoped  $\text{TiO}_2$  samples have higher adsorption quantities as well as higher surface area. In our experiment, specific surface area of  $\text{Ag}^+$  and  $\text{La}^{3+}$  codoped  $\text{TiO}_2$  sample is 130.9  $\text{m}^2/\text{g}^{-1}$ , more than that of pure  $\text{TiO}_2$  sample 109.6  $\text{m}^2/\text{g}^{-1}$ .

The pore sizes distributions of the as-prepared samples are shown in Fig. 4b, indicating that the pores with size less than 4 nm reach as high as 94.26% after  $\text{Ag}^+$  and  $\text{La}^{3+}$  codoped  $\text{TiO}_2$  compared with 90.35% of undoped  $\text{TiO}_2$ , while the ones with size

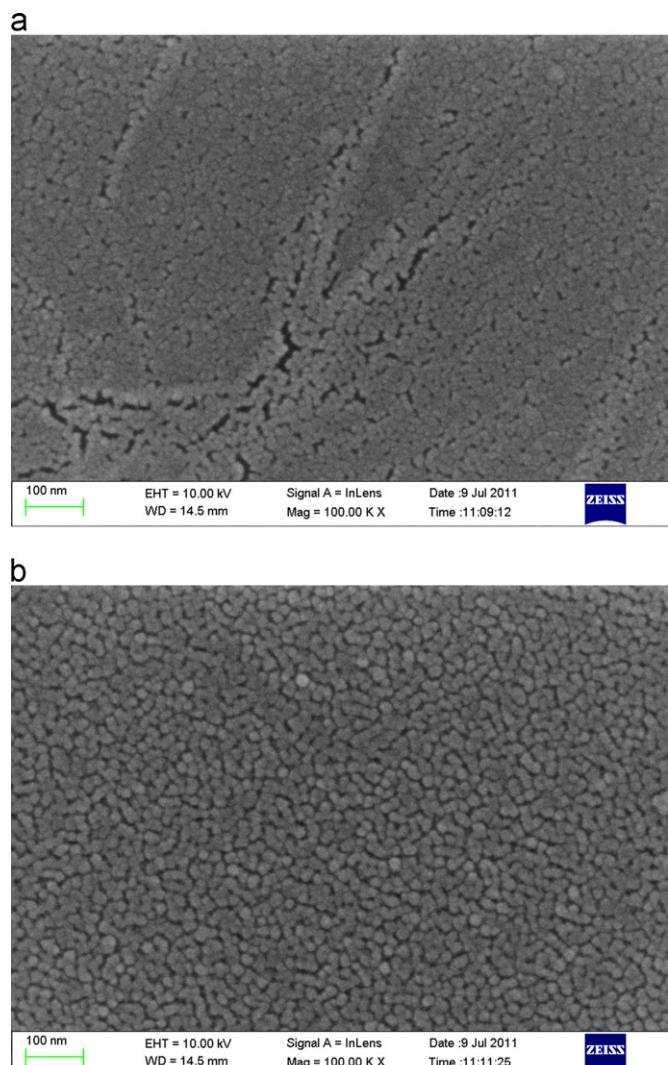



Fig. 3. FE-SEM images for  $\text{TiO}_2$  samples: (a) Pure  $\text{TiO}_2$  film and (b)  $\text{Ag}^+$  and  $\text{La}^{3+}$  codoped  $\text{TiO}_2$  film.

more than 4 nm are only 5.73% after  $\text{Ag}^+$  and  $\text{La}^{3+}$  codoped  $\text{TiO}_2$  compared with 9.65% of undoped  $\text{TiO}_2$ . It is evident that  $\text{Ag}^+$  and  $\text{La}^{3+}$  codoping can decrease the pore sizes of the  $\text{TiO}_2$  samples. The smaller pores and the larger specific surface area of the  $\text{TiO}_2$  samples by  $\text{Ag}^+$  and  $\text{La}^{3+}$  codoping are favorable to the photocatalytic degradation.

The recombination of electron–hole in the  $\text{TiO}_2$  samples was studied by photoluminescence emission spectra [12]. The PL emission spectra of three samples were recorded in the wavelength range of 300–600 nm in our study, as shown in Fig. 5. It can be observed that the position of the peaks about 380 nm due to the emission of the band gap transition were similar while PL intensities were quite different among three samples. The PL intensity of  $\text{Ag}^+/\text{La}^{3+}$  surface codoped  $\text{TiO}_2$  was the lowest among all samples, indicating the recombination of electron and hole was effectively prohibited compared with pure  $\text{TiO}_2$ ,  $\text{Ag}^+/\text{La}^{3+}$  bulk codoped  $\text{TiO}_2$ . It is well-known the photocatalytic efficiency depends on the competition between the surface charge carrier transfer rate and the electron–hole recombination rate. Charge trapping by bulk doped ions consumed large quantities of charge carriers before their diffusion to the surface (deep trapping), thus reducing the activities of the bulk doped ions samples. In contrast to bulk doped  $\text{TiO}_2$  samples, surface doping allows most of charge carriers to successfully migrate to the surface and prevents

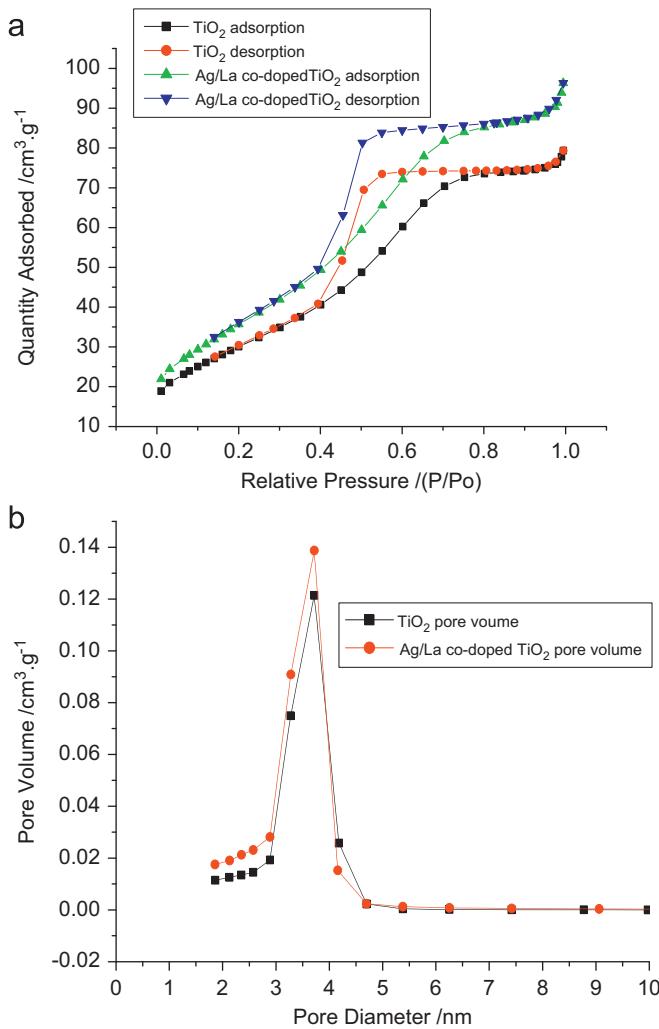



Fig. 4.  $N_2$  adsorption/desorption isotherms (a) and pore size distribution (b) of pure  $TiO_2$  and  $Ag^+/La^{3+}$  codoped  $TiO_2$ .

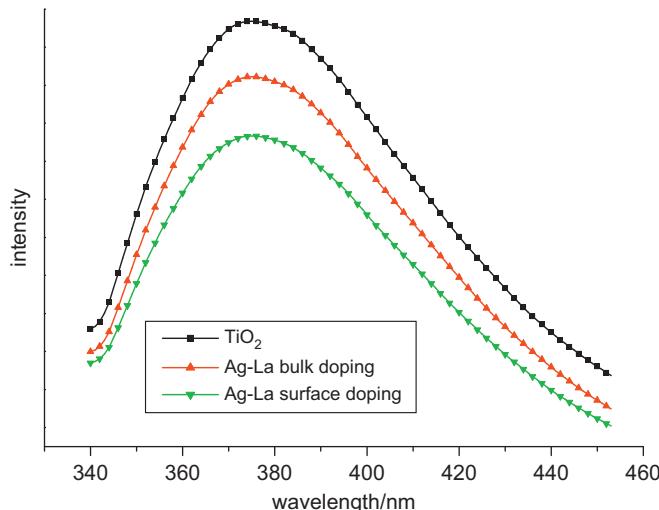



Fig. 5. Effect of ions doping modes on PL spectra.

surface recombination for high photocatalytic activities [13]. In our experiments, the degradation rate of aqueous ANR using surface codoping  $Ag^+/La^{3+}$   $TiO_2$  film is 62.5%, compared with that of bulk codoping  $Ag^+/La^{3+}$   $TiO_2$  film 55.3% under the same

conditions. Therefore, we adopted a surface doping process to prepare ions doped  $TiO_2$  film in following experiments.

Fig. 6 shows UV-vis absorption spectra (a) and degradation rate (b) of ANR solutions using an appropriate amount of  $Ag^+$ ,  $La^{3+}$ ,  $Ag^+/La^{3+}$  doped and undoped  $TiO_2$  films on glass substrates under UV-lamp irradiation with wavelength of 365 nm for 45 min. From Fig. 6, it can be seen that the degradation rates of aqueous ANR using  $TiO_2$  film is 33.5%, compared with that of  $Ag^+$  doped  $TiO_2$  film 53.9%;  $La^{3+}$  doped  $TiO_2$  film 54.2%; and  $Ag^+$  and  $La^{3+}$  codoped  $TiO_2$  films 62.5%. Obviously, we can draw the conclusion that  $Ag^+$  and  $La^{3+}$  codoped  $TiO_2$  films have the best photocatalytic activity under the same conditions. Since the ions dopant can serve not only as a mediator of interfacial charge transfer but also as a recombination center, the photocatalytic activity of ions doped  $TiO_2$  is strongly dependent on the dopant concentration. In our case, an optimal  $Ag^+$  or  $La^{3+}$  doping concentration is  $7 \times 10^{-3}$  M, while an optimal co-doping concentration is  $Ag^+ 1 \times 10^{-3}$  M,  $La^{3+} 6 \times 10^{-3}$  M.

Diffuse reflection UV-vis spectra of undoped and  $Ag^+/La^{3+}$  codoped  $TiO_2$  film are shown in Fig. 7. It is clear that the absorbance onset of codoped  $TiO_2$  film red shift obviously to about 450 nm compared with that of pure  $TiO_2$  film 350 nm. It is worth mentioning that  $Ag^+/La^{3+}$  codoped  $TiO_2$  film has

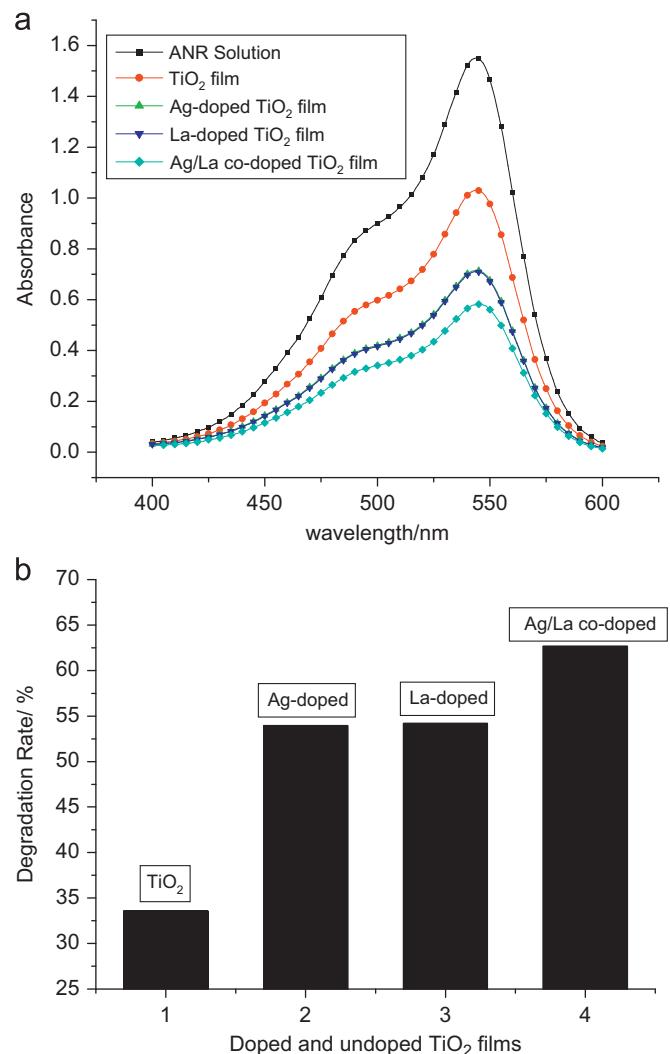
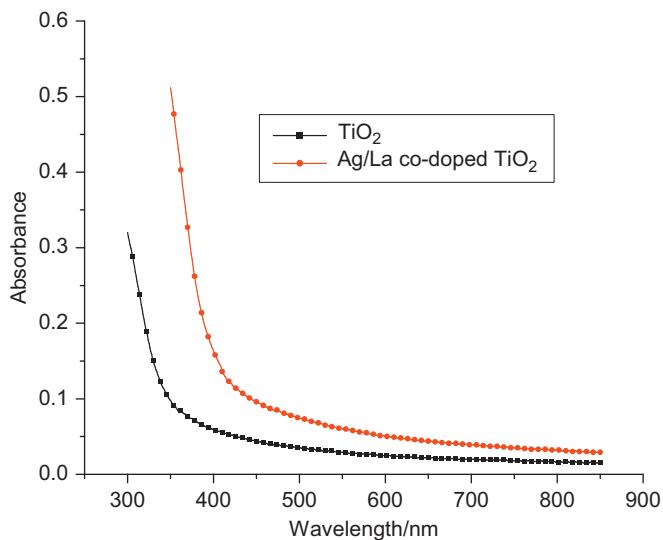
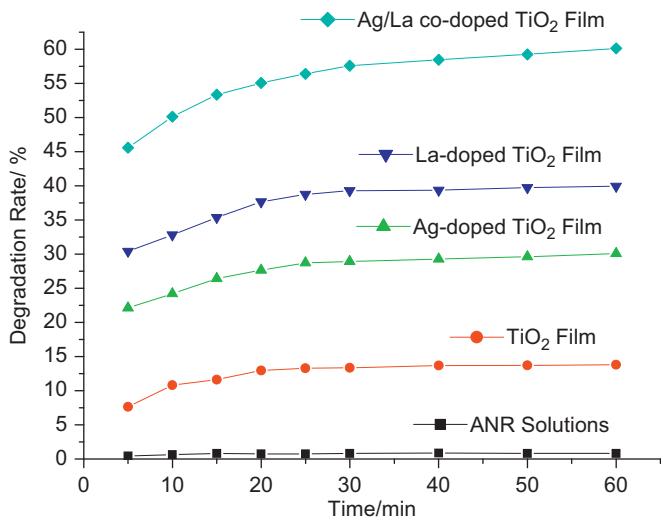
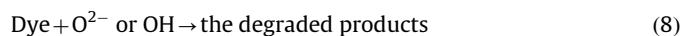
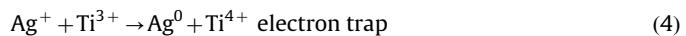





Fig. 6. UV-vis absorption spectra (a) and degradation rate (b) of ANR solutions using an appropriate amount of  $Ag^+$ ,  $La^{3+}$ ,  $Ag^+/La^{3+}$  doped and undoped  $TiO_2$  films on glass substrates after irradiated for 45 min.



**Fig. 7.** Diffuse reflection UV-vis spectra of undoped and  $\text{Ag}^+/\text{La}^{3+}$  doped  $\text{TiO}_2$  film.





**Fig. 8.** Degradation rate of ANR solutions using undoped and doped  $\text{TiO}_2$  films after visible light irradiated for 60 min.

a remarkably higher absorption in the visible region with respect to pure  $\text{TiO}_2$  film.

Fig. 8 shows the degradation rate of ANR solutions using an appropriate amount of  $\text{Ag}^+$ ,  $\text{La}^{3+}$ ,  $\text{Ag}^+/\text{La}^{3+}$  doped and undoped  $\text{TiO}_2$  films on glass substrates after visible light irradiated for 60 min. From Fig. 8, the degradation rate of ANR using  $\text{TiO}_2$  film is about 13.8%, compared with that of  $\text{Ag}^+$  doped  $\text{TiO}_2$  film 30.1%,  $\text{La}^{3+}$  doped  $\text{TiO}_2$  film 39.9%, and  $\text{Ag}^+/\text{La}^{3+}$  codoped  $\text{TiO}_2$  film 60.1%, while the ANR solutions without  $\text{TiO}_2$  film have almost no photo-degradation.

Based on the above experiments,  $\text{Ag}^+$  and  $\text{La}^{3+}$  surface codoped  $\text{TiO}_2$  films exhibit excellent photocatalytic activity under both UV and visible light irradiations. This may be ascribed to the fact that the microstructure of  $\text{TiO}_2$  films and the effect of the doping modes. First of all, the surface microstructure, including morphology of surface, grain size and crystalline phase of  $\text{TiO}_2$ , pore size and distribution, and so on, is of great influence on the photocatalytic activity of  $\text{TiO}_2$  films. According to the above, FE-SEM, XRD and BET analyses,  $\text{Ag}^+$  and  $\text{La}^{3+}$  codoping can effectively lessen the aggregation of the  $\text{TiO}_2$  nano-particles, induce the pores uniform, decrease the numbers of micro-pores,

and increase specific surface area of the  $\text{TiO}_2$  films, as well as inhibit the transformation of anatase to rutile. These factors lead to effective photodegradation of organic dyes. Secondly, surface doping improve the photocatalytic activity of  $\text{TiO}_2$  film to a greater extent than does bulk doping, because surface doping allows most of charge carriers to successfully migrate to the surface and prevents surface recombination. Meanwhile,  $\text{Ag}^+/\text{La}^{3+}$  codoping is more beneficial than single doping to the photocatalytic activity of  $\text{TiO}_2$  film, because  $\text{Ag}^+$  and  $\text{La}^{3+}$  codoping can effectively reduce the recombination of photo-generated electrons and holes. On one hand,  $\text{Ag}^+$  ions doping can result from formation of dopant energy level within the band gap of  $\text{TiO}_2$ , leading to more photo-generated carriers to join in the degradation reaction. On the other hand,  $\text{Ag}^+$  doping can also reduce the recombination of photo-generated electrons and holes through trapping electrons. It is well-known that  $\text{Ag}^+$  ion has a completely filled  $d$  orbital and empty  $s$  orbital ( $4d^{10}5s^0$ ), which is relatively stable, and electrons trapped can be easily released, so it elongates the life of photo-excited electrons and holes. Normally, the  $\text{La}^{3+}$  does not form any impurity level in the forbidden band of  $\text{TiO}_2$ , but  $\text{La}^{3+}$  ions doping can lead to the formation of titanium dioxide lattice distortion, which is easy to accumulate variable oxygen vacancy so as to trap photo-generated holes [14]. Moreover,  $\text{La}^{3+}$  ion has a completely empty orbital ( $4f^05d^06s^0$ ), which is also relatively stable, and holes trapped can be easily released, so it elongates the life of photo-excited electrons and holes. The major steps in the mechanism may be summarized by Eqs. (1)–(8) [15].



In a word, If the amount of  $\text{Ag}^+/\text{La}^{3+}$  codoping is appropriate, the photocatalytic activity of the  $\text{TiO}_2$  film can significantly enhance. Moreover, small addition of rare earth metals, such as La, etc., can reduce the number of pores produced at the film/substrate interface, enhancing the adherence of the  $\text{TiO}_2$  films to the substrates, and therefore being favorable to photocatalytic activity after a long time exposure to air [16].

#### 4. Conclusions

Our experimental results confirmed that ions surface doping significantly improved the photodegradation of organic dyes with respect to ions bulk doping. The obvious red shift of absorption edge of  $\text{TiO}_2$  films by ions surface codoping may promise a potential application for  $\text{TiO}_2$  films in visible light. Moreover, modified  $\text{TiO}_2$  films can set a good ground for the design and development of efficient continuous flow photocatalytic reactors.

## Acknowledgments

This work was financially supported partially by National Natural Science Foundation of China (Grant no. 20674005) and the Doctorial Foundation of University of Jinan (B0606).

## References

- [1] S. Ahmed, M.G. Rasul, W.N. Martens, R. Brown, M.A. Hashib, *Water Air Soil Pollut.* 215 (2011) 3–29.
- [2] A. Zaleska, E. Grabowska, J. Sobczak, M. Gazda, J. Hupka, *Appl. Catal. B* 89 (2009) 469–475.
- [3] Y.X. Rao, D.M. Antonelli, *J. Mater. Chem.* 19 (2009) 1937–1944.
- [4] Y. Huang, G. Xie, S.P. Chen, S.L. Gao, *J. Solid State Chem.* 184 (2011) 502–508.
- [5] Y.M. Wu, J.L. Zhang, L. Xiao, F. Chen, *Appl. Catal. B* 88 (2009) 525–532.
- [6] J.C. Yu, W. Ho, J. Yu, H. Yip, P.K. Wong, J. Zhao, *Environ. Sci. Technol.* 39 (2005) 1175–1179.
- [7] H.J. Zhang, G.H. Chen, D.W. Bahnemann, *J. Mater. Chem.* 19 (2009) 5089–5121.
- [8] M.K. Seery, R. George, P. Floris, S.C. Pillai, *J. Photochem. Photobiol. A* 189 (2007) 258–263.
- [9] J. García-Serrano, E. Gómez-Hernández, M. Ocampo-Fernández, U. Pal, *Curr. Appl. Phys.* 9 (2009) 1097–1105.
- [10] Y.H. Ao, J.J. Xu, D.G. Fu, C.W. Yuan, *J. Phys. Chem. Solids* 69 (2008) 2660–2664.
- [11] X.H. Wu, X.B. Ding, W. Qin, W.D. He, Z.H. Jiang, *J. Hazard. Mater.* 137 (2006) 192–197.
- [12] Y.M. Wu, J.L. Zhang, L. Xiao, F. Chen, *Appl. Catal. B* 88 (2009) 525–532.
- [13] S.M. Chang, W.S. Liu, *Appl. Catal. B* 101 (2011) 333–342.
- [14] B. Reddy, A. Khan, *Catal. Surv. Asia* 9 (2005) 155–171.
- [15] J.C. Yu, W. Ho, J. Liu, H. Yip, P.K. Wong, *Environ. Sci. Technol.* 37 (2003) 2296–2301.
- [16] M.M. Yao, Y.D. He, W. Zhang, W. Gao, *Mater. Trans.* 46 (2005) 2089–2092.